Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
2.
JAMA Netw Open ; 6(1): e2253590, 2023 01 03.
Article in English | MEDLINE | ID: covidwho-2219605

ABSTRACT

Importance: COVID-19 was the underlying cause of death for more than 940 000 individuals in the US, including at least 1289 children and young people (CYP) aged 0 to 19 years, with at least 821 CYP deaths occurring in the 1-year period from August 1, 2021, to July 31, 2022. Because deaths among US CYP are rare, the mortality burden of COVID-19 in CYP is best understood in the context of all other causes of CYP death. Objective: To determine whether COVID-19 is a leading (top 10) cause of death in CYP in the US. Design, Setting, and Participants: This national population-level cross-sectional epidemiological analysis for the years 2019 to 2022 used data from the US Centers for Disease Control and Prevention Wide-Ranging Online Data for Epidemiologic Research (WONDER) database on underlying cause of death in the US to identify the ranking of COVID-19 relative to other causes of death among individuals aged 0 to 19 years. COVID-19 deaths were considered in 12-month periods between April 1, 2020, and August 31, 2022, compared with deaths from leading non-COVID-19 causes in 2019, 2020, and 2021. Main Outcomes and Measures: Cause of death rankings by total number of deaths, crude rates per 100 000 population, and percentage of all causes of death, using the National Center for Health Statistics 113 Selected Causes of Death, for ages 0 to 19 and by age groupings (<1 year, 1-4 years, 5-9 years, 10-14 years, 15-19 years). Results: There were 821 COVID-19 deaths among individuals aged 0 to 19 years during the study period, resulting in a crude death rate of 1.0 per 100 000 population overall; 4.3 per 100 000 for those younger than 1 year; 0.6 per 100 000 for those aged 1 to 4 years; 0.4 per 100 000 for those aged 5 to 9 years; 0.5 per 100 000 for those aged 10 to 14 years; and 1.8 per 100 000 for those aged 15 to 19 years. COVID-19 mortality in the time period of August 1, 2021, to July 31, 2022, was among the 10 leading causes of death in CYP aged 0 to 19 years in the US, ranking eighth among all causes of deaths, fifth in disease-related causes of deaths (excluding unintentional injuries, assault, and suicide), and first in deaths caused by infectious or respiratory diseases when compared with 2019. COVID-19 deaths constituted 2% of all causes of death in this age group. Conclusions and Relevance: The findings of this study suggest that COVID-19 was a leading cause of death in CYP. It caused substantially more deaths in CYP annually than any vaccine-preventable disease historically in the recent period before vaccines became available. Various factors, including underreporting and not accounting for COVID-19's role as a contributing cause of death from other diseases, mean that these estimates may understate the true mortality burden of COVID-19. The findings of this study underscore the public health relevance of COVID-19 to CYP. In the likely future context of sustained SARS-CoV-2 circulation, appropriate pharmaceutical and nonpharmaceutical interventions (eg, vaccines, ventilation, air cleaning) will continue to play an important role in limiting transmission of the virus and mitigating severe disease in CYP.


Subject(s)
COVID-19 , Communicable Diseases , Child , Humans , Adolescent , Cause of Death , Cross-Sectional Studies , SARS-CoV-2
3.
Journal of the Royal Statistical Society: Series A (Statistics in Society) ; 185(S1), 2022.
Article in English | Web of Science | ID: covidwho-2193233

ABSTRACT

We propose a new framework to model the COVID-19 epidemic of the United Kingdom at the local authority level. The model fits within a general framework for semi-mechanistic Bayesian models of the epidemic based on renewal equations, with some important innovations, including a random walk modelling the reproduction number, incorporating information from different sources, including surveys to estimate the time-varying proportion of infections that lead to reported cases or deaths, and modelling the underlying infections as latent random variables. The model is designed to be updated daily using publicly available data. We envisage the model to be useful for now-casting and short-term projections of the epidemic as well as estimating historical trends. The model fits are available on a public website: . The model is currently being used by the Scottish government to inform their interventions.

4.
Nature ; 599(7883): 114-119, 2021 11.
Article in English | MEDLINE | ID: covidwho-2114880

ABSTRACT

The B.1.617.2 (Delta) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified in the state of Maharashtra in late 2020 and spread throughout India, outcompeting pre-existing lineages including B.1.617.1 (Kappa) and B.1.1.7 (Alpha)1. In vitro, B.1.617.2 is sixfold less sensitive to serum neutralizing antibodies from recovered individuals, and eightfold less sensitive to vaccine-elicited antibodies, compared with wild-type Wuhan-1 bearing D614G. Serum neutralizing titres against B.1.617.2 were lower in ChAdOx1 vaccinees than in BNT162b2 vaccinees. B.1.617.2 spike pseudotyped viruses exhibited compromised sensitivity to monoclonal antibodies to the receptor-binding domain and the amino-terminal domain. B.1.617.2 demonstrated higher replication efficiency than B.1.1.7 in both airway organoid and human airway epithelial systems, associated with B.1.617.2 spike being in a predominantly cleaved state compared with B.1.1.7 spike. The B.1.617.2 spike protein was able to mediate highly efficient syncytium formation that was less sensitive to inhibition by neutralizing antibody, compared with that of wild-type spike. We also observed that B.1.617.2 had higher replication and spike-mediated entry than B.1.617.1, potentially explaining the B.1.617.2 dominance. In an analysis of more than 130 SARS-CoV-2-infected health care workers across three centres in India during a period of mixed lineage circulation, we observed reduced ChAdOx1 vaccine effectiveness against B.1.617.2 relative to non-B.1.617.2, with the caveat of possible residual confounding. Compromised vaccine efficacy against the highly fit and immune-evasive B.1.617.2 Delta variant warrants continued infection control measures in the post-vaccination era.


Subject(s)
Immune Evasion , SARS-CoV-2/growth & development , SARS-CoV-2/immunology , Virus Replication/immunology , Antibodies, Neutralizing/immunology , COVID-19 Vaccines/immunology , Cell Fusion , Cell Line , Female , Health Personnel , Humans , India , Kinetics , Male , Spike Glycoprotein, Coronavirus/metabolism , Vaccination
5.
Nat Commun ; 13(1): 7003, 2022 Nov 16.
Article in English | MEDLINE | ID: covidwho-2116500

ABSTRACT

Genomic sequencing is essential to track the evolution and spread of SARS-CoV-2, optimize molecular tests, treatments, vaccines, and guide public health responses. To investigate the global SARS-CoV-2 genomic surveillance, we used sequences shared via GISAID to estimate the impact of sequencing intensity and turnaround times on variant detection in 189 countries. In the first two years of the pandemic, 78% of high-income countries sequenced >0.5% of their COVID-19 cases, while 42% of low- and middle-income countries reached that mark. Around 25% of the genomes from high income countries were submitted within 21 days, a pattern observed in 5% of the genomes from low- and middle-income countries. We found that sequencing around 0.5% of the cases, with a turnaround time <21 days, could provide a benchmark for SARS-CoV-2 genomic surveillance. Socioeconomic inequalities undermine the global pandemic preparedness, and efforts must be made to support low- and middle-income countries improve their local sequencing capacity.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Genome, Viral/genetics , COVID-19/epidemiology , Pandemics , Genomics
6.
JAMA Pediatr ; 176(11): 1145-1148, 2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-2013272

ABSTRACT

This study assesses estimates of new orphanhood based on excess deaths to provide a comprehensive measure of the COVID-19 pandemic's long-term impact on orphanhood and caregiver loss.


Subject(s)
Acquired Immunodeficiency Syndrome , COVID-19 , Child , Humans , Caregivers , Foster Home Care
8.
Lancet Child Adolesc Health ; 6(4): 249-259, 2022 04.
Article in English | MEDLINE | ID: covidwho-1927002

ABSTRACT

BACKGROUND: In the 6 months following our estimates from March 1, 2020, to April 30, 2021, the proliferation of new coronavirus variants, updated mortality data, and disparities in vaccine access increased the amount of children experiencing COVID-19-associated orphanhood. To inform responses, we aimed to model the increases in numbers of children affected by COVID-19-associated orphanhood and caregiver death, as well as the cumulative orphanhood age-group distribution and circumstance (maternal or paternal orphanhood). METHODS: We used updated excess mortality and fertility data to model increases in minimum estimates of COVID-19-associated orphanhood and caregiver deaths from our original study period of March 1, 2020-April 30, 2021, to include the new period of May 1-Oct 31, 2021, for 21 countries. Orphanhood was defined as the death of one or both parents; primary caregiver loss included parental death or the death of one or both custodial grandparents; and secondary caregiver loss included co-residing grandparents or kin. We used logistic regression and further incorporated a fixed effect for western European countries into our previous model to avoid over-predicting caregiver loss in that region. For the entire 20-month period, we grouped children by age (0-4 years, 5-9 years, and 10-17 years) and maternal or paternal orphanhood, using fertility contributions, and we modelled global and regional extrapolations of numbers of orphans. 95% credible intervals (CrIs) are given for all estimates. FINDINGS: The number of children affected by COVID-19-associated orphanhood and caregiver death is estimated to have increased by 90·0% (95% CrI 89·7-90·4) from April 30 to Oct 31, 2021, from 2 737 300 (95% CrI 1 976 100-2 987 000) to 5 200 300 (3 619 400-5 731 400). Between March 1, 2020, and Oct 31, 2021, 491 300 (95% CrI 485 100-497 900) children aged 0-4 years, 736 800 (726 900-746 500) children aged 5-9 years, and 2 146 700 (2 120 900-2 174 200) children aged 10-17 years are estimated to have experienced COVID-19-associated orphanhood. Globally, 76·5% (95% CrI 76·3-76·7) of children were paternal orphans, whereas 23·5% (23·3-23·7) were maternal orphans. In each age group and region, the prevalence of paternal orphanhood exceeded that of maternal orphanhood. INTERPRETATION: Our findings show that numbers of children affected by COVID-19-associated orphanhood and caregiver death almost doubled in 6 months compared with the amount after the first 14 months of the pandemic. Over the entire 20-month period, 5·0 million COVID-19 deaths meant that 5·2 million children lost a parent or caregiver. Our data on children's ages and circumstances should support pandemic response planning for children globally. FUNDING: UK Research and Innovation (Global Challenges Research Fund, Engineering and Physical Sciences Research Council, and Medical Research Council), Oak Foundation, UK National Institute for Health Research, US National Institutes of Health, and Imperial College London.


Subject(s)
COVID-19/mortality , Caregivers/supply & distribution , Child, Orphaned/statistics & numerical data , Adolescent , Adult , Child , Female , Humans , Male , Models, Statistical
9.
Nat Med ; 28(7): 1476-1485, 2022 07.
Article in English | MEDLINE | ID: covidwho-1830084

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Gamma variant of concern has spread rapidly across Brazil since late 2020, causing substantial infection and death waves. Here we used individual-level patient records after hospitalization with suspected or confirmed coronavirus disease 2019 (COVID-19) between 20 January 2020 and 26 July 2021 to document temporary, sweeping shocks in hospital fatality rates that followed the spread of Gamma across 14 state capitals, during which typically more than half of hospitalized patients aged 70 years and older died. We show that such extensive shocks in COVID-19 in-hospital fatality rates also existed before the detection of Gamma. Using a Bayesian fatality rate model, we found that the geographic and temporal fluctuations in Brazil's COVID-19 in-hospital fatality rates were primarily associated with geographic inequities and shortages in healthcare capacity. We estimate that approximately half of the COVID-19 deaths in hospitals in the 14 cities could have been avoided without pre-pandemic geographic inequities and without pandemic healthcare pressure. Our results suggest that investments in healthcare resources, healthcare optimization and pandemic preparedness are critical to minimize population-wide mortality and morbidity caused by highly transmissible and deadly pathogens such as SARS-CoV-2, especially in low- and middle-income countries.


Subject(s)
COVID-19 , Aged , Aged, 80 and over , Bayes Theorem , Brazil/epidemiology , COVID-19/epidemiology , Hospitals , Humans , SARS-CoV-2
10.
Sci Data ; 9(1): 145, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1773990

ABSTRACT

During the second half of 2020, many European governments responded to the resurging transmission of SARS-CoV-2 with wide-ranging non-pharmaceutical interventions (NPIs). These efforts were often highly targeted at the regional level and included fine-grained NPIs. This paper describes a new dataset designed for the accurate recording of NPIs in Europe's second wave to allow precise modelling of NPI effectiveness. The dataset includes interventions from 114 regions in 7 European countries during the period from the 1st August 2020 to the 9th January 2021. The paper includes NPI definitions tailored to the second wave following an exploratory data collection. Each entry has been extensively validated by semi-independent double entry, comparison with existing datasets, and, when necessary, discussion with local epidemiologists. The dataset has considerable potential for use in disentangling the effectiveness of NPIs and comparing the impact of interventions across different phases of the pandemic.


Subject(s)
COVID-19/therapy , COVID-19/epidemiology , COVID-19/psychology , Europe , Humans , Mass Gatherings , Psychosocial Intervention , SARS-CoV-2
12.
Lancet ; 399(10332): 1303-1312, 2022 04 02.
Article in English | MEDLINE | ID: covidwho-1740323

ABSTRACT

BACKGROUND: The omicron variant (B.1.1.529) of SARS-CoV-2 has demonstrated partial vaccine escape and high transmissibility, with early studies indicating lower severity of infection than that of the delta variant (B.1.617.2). We aimed to better characterise omicron severity relative to delta by assessing the relative risk of hospital attendance, hospital admission, or death in a large national cohort. METHODS: Individual-level data on laboratory-confirmed COVID-19 cases resident in England between Nov 29, 2021, and Jan 9, 2022, were linked to routine datasets on vaccination status, hospital attendance and admission, and mortality. The relative risk of hospital attendance or admission within 14 days, or death within 28 days after confirmed infection, was estimated using proportional hazards regression. Analyses were stratified by test date, 10-year age band, ethnicity, residential region, and vaccination status, and were further adjusted for sex, index of multiple deprivation decile, evidence of a previous infection, and year of age within each age band. A secondary analysis estimated variant-specific and vaccine-specific vaccine effectiveness and the intrinsic relative severity of omicron infection compared with delta (ie, the relative risk in unvaccinated cases). FINDINGS: The adjusted hazard ratio (HR) of hospital attendance (not necessarily resulting in admission) with omicron compared with delta was 0·56 (95% CI 0·54-0·58); for hospital admission and death, HR estimates were 0·41 (0·39-0·43) and 0·31 (0·26-0·37), respectively. Omicron versus delta HR estimates varied with age for all endpoints examined. The adjusted HR for hospital admission was 1·10 (0·85-1·42) in those younger than 10 years, decreasing to 0·25 (0·21-0·30) in 60-69-year-olds, and then increasing to 0·47 (0·40-0·56) in those aged at least 80 years. For both variants, past infection gave some protection against death both in vaccinated (HR 0·47 [0·32-0·68]) and unvaccinated (0·18 [0·06-0·57]) cases. In vaccinated cases, past infection offered no additional protection against hospital admission beyond that provided by vaccination (HR 0·96 [0·88-1·04]); however, for unvaccinated cases, past infection gave moderate protection (HR 0·55 [0·48-0·63]). Omicron versus delta HR estimates were lower for hospital admission (0·30 [0·28-0·32]) in unvaccinated cases than the corresponding HR estimated for all cases in the primary analysis. Booster vaccination with an mRNA vaccine was highly protective against hospitalisation and death in omicron cases (HR for hospital admission 8-11 weeks post-booster vs unvaccinated: 0·22 [0·20-0·24]), with the protection afforded after a booster not being affected by the vaccine used for doses 1 and 2. INTERPRETATION: The risk of severe outcomes following SARS-CoV-2 infection is substantially lower for omicron than for delta, with higher reductions for more severe endpoints and significant variation with age. Underlying the observed risks is a larger reduction in intrinsic severity (in unvaccinated individuals) counterbalanced by a reduction in vaccine effectiveness. Documented previous SARS-CoV-2 infection offered some protection against hospitalisation and high protection against death in unvaccinated individuals, but only offered additional protection in vaccinated individuals for the death endpoint. Booster vaccination with mRNA vaccines maintains over 70% protection against hospitalisation and death in breakthrough confirmed omicron infections. FUNDING: Medical Research Council, UK Research and Innovation, Department of Health and Social Care, National Institute for Health Research, Community Jameel, and Engineering and Physical Sciences Research Council.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , Cohort Studies , England/epidemiology , Hospitalization , Humans , Vaccines, Synthetic , mRNA Vaccines
13.
Nature ; 600(7890): 695-700, 2021 12.
Article in English | MEDLINE | ID: covidwho-1562062

ABSTRACT

Surveys are a crucial tool for understanding public opinion and behaviour, and their accuracy depends on maintaining statistical representativeness of their target populations by minimizing biases from all sources. Increasing data size shrinks confidence intervals but magnifies the effect of survey bias: an instance of the Big Data Paradox1. Here we demonstrate this paradox in estimates of first-dose COVID-19 vaccine uptake in US adults from 9 January to 19 May 2021 from two large surveys: Delphi-Facebook2,3 (about 250,000 responses per week) and Census Household Pulse4 (about 75,000 every two weeks). In May 2021, Delphi-Facebook overestimated uptake by 17 percentage points (14-20 percentage points with 5% benchmark imprecision) and Census Household Pulse by 14 (11-17 percentage points with 5% benchmark imprecision), compared to a retroactively updated benchmark the Centers for Disease Control and Prevention published on 26 May 2021. Moreover, their large sample sizes led to miniscule margins of error on the incorrect estimates. By contrast, an Axios-Ipsos online panel5 with about 1,000 responses per week following survey research best practices6 provided reliable estimates and uncertainty quantification. We decompose observed error using a recent analytic framework1 to explain the inaccuracy in the three surveys. We then analyse the implications for vaccine hesitancy and willingness. We show how a survey of 250,000 respondents can produce an estimate of the population mean that is no more accurate than an estimate from a simple random sample of size 10. Our central message is that data quality matters more than data quantity, and that compensating the former with the latter is a mathematically provable losing proposition.


Subject(s)
COVID-19 Vaccines/administration & dosage , Health Care Surveys , Vaccination/statistics & numerical data , Benchmarking , Bias , Big Data , COVID-19/epidemiology , COVID-19/prevention & control , Centers for Disease Control and Prevention, U.S. , Datasets as Topic/standards , Female , Health Care Surveys/standards , Humans , Male , Research Design , Sample Size , Social Media , United States/epidemiology , Vaccination Hesitancy/statistics & numerical data
15.
Science ; 374(6570): 995-999, 2021 Nov 19.
Article in English | MEDLINE | ID: covidwho-1526449

ABSTRACT

Delhi, the national capital of India, experienced multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreaks in 2020 and reached population seropositivity of >50% by 2021. During April 2021, the city became overwhelmed by COVID-19 cases and fatalities, as a new variant, B.1.617.2 (Delta), replaced B.1.1.7 (Alpha). A Bayesian model explains the growth advantage of Delta through a combination of increased transmissibility and reduced sensitivity to immune responses generated against earlier variants (median estimates: 1.5-fold greater transmissibility and 20% reduction in sensitivity). Seropositivity of an employee and family cohort increased from 42% to 87.5% between March and July 2021, with 27% reinfections, as judged by increased antibody concentration after a previous decline. The likely high transmissibility and partial evasion of immunity by the Delta variant contributed to an overwhelming surge in Delhi.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , Genome, Viral , Adolescent , Adult , COVID-19/immunology , COVID-19/transmission , Child , Humans , Immune Evasion , India/epidemiology , Molecular Epidemiology , Phylogeny , Reinfection , Seroepidemiologic Studies , Young Adult
16.
J R Soc Med ; 114(11): 513-524, 2021 11.
Article in English | MEDLINE | ID: covidwho-1488342

ABSTRACT

OBJECTIVE: To offer a quantitative risk-benefit analysis of two doses of SARS-CoV-2 vaccination among adolescents in England. SETTING: England. DESIGN: Following the risk-benefit analysis methodology carried out by the US Centers for Disease Control, we calculated historical rates of hospital admission, Intensive Care Unit admission and death for ascertained SARS-CoV-2 cases in children aged 12-17 in England. We then used these rates alongside a range of estimates for incidence of long COVID, vaccine efficacy and vaccine-induced myocarditis, to estimate hospital and Intensive Care Unit admissions, deaths and cases of long COVID over a period of 16 weeks under assumptions of high and low case incidence. PARTICIPANTS: All 12-17 year olds with a record of confirmed SARS-CoV-2 infection in England between 1 July 2020 and 31 March 2021 using national linked electronic health records, accessed through the British Heart Foundation Data Science Centre. MAIN OUTCOME MEASURES: Hospitalisations, Intensive Care Unit admissions, deaths and cases of long COVID averted by vaccinating all 12-17 year olds in England over a 16-week period under different estimates of future case incidence. RESULTS: At high future case incidence of 1000/100,000 population/week over 16 weeks, vaccination could avert 4430 hospital admissions and 36 deaths over 16 weeks. At the low incidence of 50/100,000/week, vaccination could avert 70 hospital admissions and two deaths over 16 weeks. The benefit of vaccination in terms of hospitalisations in adolescents outweighs risks unless case rates are sustainably very low (below 30/100,000 teenagers/week). Benefit of vaccination exists at any case rate for the outcomes of death and long COVID, since neither have been associated with vaccination to date. CONCLUSIONS: Given the current (as at 15 September 2021) high case rates (680/100,000 population/week in 10-19 year olds) in England, our findings support vaccination of adolescents against SARS-CoV2.


Subject(s)
COVID-19 Vaccines , COVID-19/prevention & control , Hospitalization , Intensive Care Units , Public Health , Severity of Illness Index , Vaccination , Adolescent , Adolescent Health , Age Factors , COVID-19/complications , COVID-19/mortality , COVID-19/therapy , COVID-19 Vaccines/adverse effects , Child , Child Health , England , Female , Humans , Incidence , Male , Myocarditis/etiology , Risk , SARS-CoV-2 , Treatment Outcome , Vaccination/adverse effects , Post-Acute COVID-19 Syndrome
17.
Lancet Public Health ; 6(11): e805-e816, 2021 11.
Article in English | MEDLINE | ID: covidwho-1467001

ABSTRACT

BACKGROUND: High-resolution data for how mortality and longevity have changed in England, UK are scarce. We aimed to estimate trends from 2002 to 2019 in life expectancy and probabilities of death at different ages for all 6791 middle-layer super output areas (MSOAs) in England. METHODS: We performed a high-resolution spatiotemporal analysis of civil registration data from the UK Small Area Health Statistics Unit research database using de-identified data for all deaths in England from 2002 to 2019, with information on age, sex, and MSOA of residence, and population counts by age, sex, and MSOA. We used a Bayesian hierarchical model to obtain estimates of age-specific death rates by sharing information across age groups, MSOAs, and years. We used life table methods to calculate life expectancy at birth and probabilities of death in different ages by sex and MSOA. FINDINGS: In 2002-06 and 2006-10, all but a few (0-1%) MSOAs had a life expectancy increase for female and male sexes. In 2010-14, female life expectancy decreased in 351 (5·2%) of 6791 MSOAs. By 2014-19, the number of MSOAs with declining life expectancy was 1270 (18·7%) for women and 784 (11·5%) for men. The life expectancy increase from 2002 to 2019 was smaller in MSOAs where life expectancy had been lower in 2002 (mostly northern urban MSOAs), and larger in MSOAs where life expectancy had been higher in 2002 (mostly MSOAs in and around London). As a result of these trends, the gap between the first and 99th percentiles of MSOA life expectancy for women increased from 10·7 years (95% credible interval 10·4-10·9) in 2002 to reach 14·2 years (13·9-14·5) in 2019, and for men increased from 11·5 years (11·3-11·7) in 2002 to 13·6 years (13·4-13·9) in 2019. INTERPRETATION: In the decade before the COVID-19 pandemic, life expectancy declined in increasing numbers of communities in England. To ensure that this trend does not continue or worsen, there is a need for pro-equity economic and social policies, and greater investment in public health and health care throughout the entire country. FUNDING: Wellcome Trust, Imperial College London, Medical Research Council, Health Data Research UK, and National Institutes of Health Research.


Subject(s)
Life Expectancy/trends , Mortality/trends , Adolescent , Adult , Aged , Aged, 80 and over , Bayes Theorem , Child , Child, Preschool , England/epidemiology , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Registries , Residence Characteristics/statistics & numerical data , Risk Assessment , Spatio-Temporal Analysis , Young Adult
19.
Nat Commun ; 12(1): 5820, 2021 10 05.
Article in English | MEDLINE | ID: covidwho-1454762

ABSTRACT

European governments use non-pharmaceutical interventions (NPIs) to control resurging waves of COVID-19. However, they only have outdated estimates for how effective individual NPIs were in the first wave. We estimate the effectiveness of 17 NPIs in Europe's second wave from subnational case and death data by introducing a flexible hierarchical Bayesian transmission model and collecting the largest dataset of NPI implementation dates across Europe. Business closures, educational institution closures, and gathering bans reduced transmission, but reduced it less than they did in the first wave. This difference is likely due to organisational safety measures and individual protective behaviours-such as distancing-which made various areas of public life safer and thereby reduced the effect of closing them. Specifically, we find smaller effects for closing educational institutions, suggesting that stringent safety measures made schools safer compared to the first wave. Second-wave estimates outperform previous estimates at predicting transmission in Europe's third wave.


Subject(s)
COVID-19/epidemiology , Government , Basic Reproduction Number , COVID-19/virology , Europe/epidemiology , Humans , Models, Theoretical , SARS-CoV-2/physiology , Time Factors
20.
Lancet ; 398(10298): 391-402, 2021 07 31.
Article in English | MEDLINE | ID: covidwho-1454623

ABSTRACT

BACKGROUND: The COVID-19 pandemic priorities have focused on prevention, detection, and response. Beyond morbidity and mortality, pandemics carry secondary impacts, such as children orphaned or bereft of their caregivers. Such children often face adverse consequences, including poverty, abuse, and institutionalisation. We provide estimates for the magnitude of this problem resulting from COVID-19 and describe the need for resource allocation. METHODS: We used mortality and fertility data to model minimum estimates and rates of COVID-19-associated deaths of primary or secondary caregivers for children younger than 18 years in 21 countries. We considered parents and custodial grandparents as primary caregivers, and co-residing grandparents or older kin (aged 60-84 years) as secondary caregivers. To avoid overcounting, we adjusted for possible clustering of deaths using an estimated secondary attack rate and age-specific infection-fatality ratios for SARS-CoV-2. We used these estimates to model global extrapolations for the number of children who have experienced COVID-19-associated deaths of primary and secondary caregivers. FINDINGS: Globally, from March 1, 2020, to April 30, 2021, we estimate 1 134 000 children (95% credible interval 884 000-1 185 000) experienced the death of primary caregivers, including at least one parent or custodial grandparent. 1 562 000 children (1 299 000-1 683 000) experienced the death of at least one primary or secondary caregiver. Countries in our study set with primary caregiver death rates of at least one per 1000 children included Peru (10·2 per 1000 children), South Africa (5·1), Mexico (3·5), Brazil (2·4), Colombia (2·3), Iran (1·7), the USA (1·5), Argentina (1·1), and Russia (1·0). Numbers of children orphaned exceeded numbers of deaths among those aged 15-50 years. Between two and five times more children had deceased fathers than deceased mothers. INTERPRETATION: Orphanhood and caregiver deaths are a hidden pandemic resulting from COVID-19-associated deaths. Accelerating equitable vaccine delivery is key to prevention. Psychosocial and economic support can help families to nurture children bereft of caregivers and help to ensure that institutionalisation is avoided. These data show the need for an additional pillar of our response: prevent, detect, respond, and care for children. FUNDING: UK Research and Innovation (Global Challenges Research Fund, Engineering and Physical Sciences Research Council, Medical Research Council), UK National Institute for Health Research, US National Institutes of Health, and Imperial College London.


Subject(s)
COVID-19/mortality , Caregivers/supply & distribution , Child, Orphaned/statistics & numerical data , Models, Statistical , Adolescent , Adult , Aged , Child , Female , Global Health , Humans , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL